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Abstract

We present results of a search for R-parity-violating decay of the neutralino ~�01,

taken to be the Lightest Supersymmetric Particle. It is assumed that this decay

proceeds through one of the lepton-number violating couplings �
0

2jk (j = 1; 2;

k = 1; 2; 3), and that R-parity is conserved in all other production and decay

processes in the event. This scenario provides two muons and four jets in the

�nal state. This search is based on 77.5 � 3.9 pb�1 of data, collected by the D�

experiment at the Fermilab Tevatron in pp collisions at
p
s=1.8 TeV in 1992{

1995. Background expected from standard model processes amounts to 0.18 �
0.03 � 0.02 events. In the absence of candidate events, the result is interpreted

in terms of limits on squark and gluino masses within the framework of the

minimal low-energy supergravity supersymmetry model.

A search for events with multiple leptons and jets is an e�ective way to look for new physics
because such events do not su�er from large standard model (SM) backgrounds. These
events can provide evidence of R-parity-violating (RPV) decays of supersymmetric (SUSY)
particles [1,2]. R-parity is a discrete multiplicative quantum number that distinguishes
SM particles from their SUSY partners. It is de�ned as R = (�1)3B+L+2S, where B, L,
and S are the baryon, lepton, and spin quantum numbers, respectively. R is +1 for SM
particles and �1 for the corresponding SUSY particles. Originally, conservation of R-parity
was imposed on supersymmetric theories because the combination of lepton-number and
baryon-number violating couplings in the Lagrangian could have generated several rare or
forbidden processes at unacceptably high rates. One such example is the decay of the proton.
However, rapid proton decay as well as other rare decays can be prevented by not allowing
simultaneous violations of baryon and lepton numbers. Thus, a small violation of R-parity
cannot be excluded.

The Yukawa coupling terms in the superpotential that induce R-parity violation are:

�ijkLiLjEk + �
0

ijkLiQjDk + �
00

ijkU iDjDk,

where L and Q are the SU(2)-doublet lepton and quark super�elds; E, U , and D are the
singlet lepton, up-type quark, and down-type quark super�elds, respectively; and i, j, and
k are the generation indices. Since � and �

00

are antisymmetric in the �rst two and last
two indices, respectively, there are in total 45 possible couplings. For experimental searches
it is usually assumed that only one of the 45 couplings is non-zero. Since experimental
upper bounds on these couplings from low-energy measurements are quite stringent [3], it

4



is further assumed that R-parity violation manifests itself only in the decay of the lightest
supersymmetric particle (LSP). At the same time, these couplings are assumed to be strong
enough so that the LSP is unstable and decays within the detector, close to the interaction
vertex, which sets the scale for � at � 10�3. A previous study at D� [4] in the dielectron
+ jets channel, searched for such a decay for non-vanishing �

0

1jk (j = 1; 2 and k = 1; 2; 3)
couplings in the framework of the minimal low-energy supergravity supersymmetry mod-
el (mSUGRA) [5], with ~�01 as the LSP. This model contains �ve parameters: a common
mass for scalars (m0), a common mass for gauginos (m1=2), a common trilinear coupling
(A0, speci�ed at the grand uni�cation scale), the ratio of the vacuum expectation values
of the two Higgs doublets (tan�), and the sign of the Higgsino mass parameter (�). The
LSP decay to a charged lepton and two quark jets involving one of the �

0

ijk couplings is a
viable mode for searching for SUSY at the Tevatron for the following reasons. The LSP
can be produced either directly or through cascade decays from squarks or gluinos and can
subsequently decay into a lepton and two quarks. The branching fraction of this decay de-
pends on the composition of the LSP, which in turn depends on the mSUGRA parameters
described earlier. Studies have shown that at the energy of the Tevatron, the amount of
signal in any of the lepton + jets decay channels of the LSP can be substantial for a large
range of values of the mSUGRA parameters [6,7]. Also, such events will not contain any
missing energy, thus making it easier to search for a RPV signal. We report a study similar
to the previous one [4], for �nite �

0

222 coupling (the study is equally valid for all the �
0

2jk

couplings with j = 1; 2 and k = 1; 2; 3), based on a signature of two energetic muons and
four energetic jets. There are several standard model processes that mimic this signature,
e.g., �/Z ! ��, Z ! �� ! ��, tt! ��, WW ! ��, and accompanying jets.

The D� detector has been described elsewhere [8]. The most important parts for this
analysis are the uranium/liquid-argon calorimeter and the muon system. A cone algorithm
with a cone radius of 0.5 in the �-� space, where � is the pseudorapidity and � is the az-
imuthal angle, is used for jet identi�cation [9]. Muons are identi�ed as tracks that leave
minimum ionizing energy in the calorimeter, and are reconstructed in the muon system. An
integrated luminosity of 77.5 � 3.9 pb�1 collected with the D� detector during the 1992{
1995 Tevatron run at

p
s = 1.8 TeV is used for this analysis. The data are required to

satisfy a trigger demanding one muon (pT > 10 GeV/c, j�j < 1.7), and one jet (ET > 15
GeV, j�j < 2.5). In the o�ine analysis, an event is selected only if it has at least two muons
within j�j < 1.7 (pT > 15 GeV/c for the �rst muon, and pT > 10 GeV/c for the second
muon), and at least four jets within j�j < 2.5 and with ET > 15 GeV. The muons and jets
are required to satisfy standard D� selection criteria [10,11]. The muons are also required
to be isolated from jets by a distance > 0:5 in the �-� plane (this rejects muons coming from
heavy-avor decays, pions decaying in ight, and pion-induced punchthroughs). In addition,
several other criteria are imposed to minimize background. The aplanarity [11] of the jets
in each event is required to be greater than 0.03. The invariant mass of the two muons
is required to be greater than 5 GeV/c2, which helps to reject low-energy resonances (e.g.
J= ) and spurious combinations of muon tracks. HT , the scalar sum of ET of all muons and
jets that pass kinematic and �ducial requirements, is required to be greater than 150 GeV.

Of the original 230,688 events passing the trigger requirements, none survive the above
selections. The expected backgrounds from the two main SM channels, Z(! ��) + jets
and tt(! ��) + jets, are shown in Table I, along with their statistical (�rst) and systematic
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(second) uncertainties. The contribution to background events from Z production is esti-
mated from a sample of 21,000 Z + jets events, generated using vecbos [12]. A total of
254,000 tt events, generated with herwig [13], are used to estimate the contribution from
this background. The D� detector is simulated using a geant-based package [14], which
provides e�ciencies of the selection criteria for signal and background events. We illustrate
in Fig. 1, the e�ect of one of the selection criteria (number of jets in an event) on events
at a typical signal point (m0=140 GeV/c2, m1=2=90 GeV/c2, A0=0, tan�=2, � < 0) and
on events from the background channel Z(! ��) + jets. The arrow in Fig. 1 indicates the
minimum number of jets in accepted events. The instrumental background, which arises

TABLE I. Summary of major backgrounds. First error is statistical and second error is system-

atic.

Background Expected events for 77.5 pb�1

process

Z(! ��) + jets 0:140� 0:031� 0:015

tt(! ��) + jets 0:042� 0:002� 0:013

Total 0:182� 0:031� 0:020

from misidenti�cation of jets as muons, is negligible in this analysis. As can be seen from
Table I, the expected number of background events is quite small. The statistical error arises
from a combination of uctuations in the Monte Carlo events and uncertainties in the muon
and jet identi�cation e�ciencies. The systematic error arises due to uncertainty in the jet
energy scale and in the values of production cross sections.

Signal events are generated with isajet [15], modi�ed to incorporate RPV decays based
on the formalism of Ref. [6]. For each signal sample, the value of e�ciency multiplied by
the branching fraction of pp! � two muons and � four jets is estimated in the same way
as described above for the SM background. Table II shows these values and the event yields
expected from an integrated luminosity of 77.5 pb�1 for several points in the (m0, m1=2)
parameter space.

TABLE II. E�ciency (�) multiplied by branching fraction (B), and expected event yield hNi,
for several points in the (m0, m1=2) parameter space (for tan�=2, A0=0, and � < 0).

m0 (GeV/c
2) m1=2 (GeV/c

2) �B(%) hNi
0 100 0:60� 0:07+0:05

�0:03 3:0� 0:4

80 90 0:74� 0:08+0:06
�0:04 2:7� 0:3

80 110 0:34� 0:04+0:03
�0:03 0:6� 0:1

190 90 0:78� 0:06+0:05
�0:03 2:1� 0:2

260 70 0:42� 0:04+0:03
�0:02 2:7� 0:3

400 90 0:31� 0:04+0:02
�0:02 0:8� 0:1

6



Since the expected SM background is compatible with absence of observed events, we

FIG. 1. Distribution of the number of jets per event at a typical signal point (m0=140 GeV/c
2,

m1=2=90 GeV/c2) (dashed line) and background sample, Z(! ��) + jets (solid line) for 77.5 pb�1

integrated luminosity. The vertical arrow indicates the position of the applied cut.

proceed to determine the region in mSUGRA space that can be excluded. An upper limit
at the 95% con�dence level (C.L.) on the cross section for signal is obtained for each point
in the (m0;m1=2) plane for �xed values of A0=0, � < 0, and tan� = 2 and 6. A technique
based on Bayesian statistics [16] is used for this purpose, with a at prior for the signal cross
section and Gaussian priors for luminosity, e�ciency, and expected background. The limits
on the measured cross section are then compared with the leading-order SUSY prediction
given by isajet, to �nd an excluded region in the (m0;m1=2) plane. Figs. 2 and 3 show the
regions of parameter space (below the bold lines) excluded at the 95% C.L. for tan� = 2
and 6, respectively.

The shaded areas in the left-hand corners of the �gures indicate the regions where either
the model does not produce electroweak symmetry breaking or the lightest neutralino is not
the LSP. The area in the (m0, m1=2) plane excluded by experimental searches at LEP [17]
already extends beyond the shaded areas. The exclusion contour in Fig. 2 follows essentially
a contour of constant squark mass (m~q = 260 GeV/c2) for low m0 values. This is because
pair production of squarks is the dominant SUSY process that contributes to the signal in
that region. Production of gluinos, ~�02, and ~�01 becomes dominant at larger values of m0,
where the masses and production cross sections of these particles are approximately inde-
pendent of m0. The exclusion contour therefore becomes approximately independent of m0

for m0 > 250 GeV/c2.
The value of A0 does not a�ect the results signi�cantly, since it changes only the third

generation sparticle masses. Both for � > 0, and for higher values of tan� (see Fig. 3 for
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FIG. 2. Exclusion contour in the (m0;m1=2) plane for tan� = 2, � < 0, A0 = 0, and �nite �
0

2jk

(j = 1; 2; k = 1; 2; 3) coupling. The region below the bold line is excluded at the 95% C.L. The

cross hatched region is excluded for theoretical reasons (see text). m~q and m~g denote the squark

and gluino masses, respectively.

the exclusion contour at tan� = 6), the sensitivity of this search diminishes, because of the
change in the composition of the LSP, which leads to a decrease of the branching fraction
of the LSP into muons [7].

In conclusion, we have searched for RPV decay of the neutralino ~�01 into a muon and
two jets in 77.5 pb�1 of data. No candidate events were found. This result is presented as
an exclusion contour in the mSUGRA (m0, m1=2) parameter space for A0=0, tan�=2 and
6, and � < 0. In particular, for tan� = 2, squark masses below 240 GeV/c2 (for all gluino
masses) and gluino masses below 224 GeV/c2 (for all squark masses) can be excluded. For
equal masses of squarks and gluinos the mass limit is 265 GeV/c2.
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KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental
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(Czech Republic), and the A.P. Sloan Foundation.
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